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Solvable Models in Statistical Mechanics, from 
Onsager Onward 
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There is now a whole field in mathematical physics concerned with solvable 
models in statistical mechanics, field theory, and related areas. We indicate 
the influence that Onsager's solution of the planar Ising model has had, and 
continues to have, on this field. 
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There  is now a large class of models  in statist ical  m e c h a n i c s - - m o s t l y  two- 
d imens iona l ,  bu t  with some th ree -d imens iona l  m e m b e r s - - t h a t  have been 
solved by the Bethe ansa tz  or  func t iona l  re la t ion  method .  The  first such 
mode l  was the Is ing model ,  solved by On s a g e r  in 1944. tt~ This  is a mode l  
on  a square  lattice of L c o l u m n s  a n d  M rows. The  pa r t i t ion  func t ion  can 
be wr i t ten  as 

Z = Trace(  Vl V,) M (1) 

where V,, V 2 are 2 L by 2 L matrices,  k n o w n  as " t ransfer  matr ices":  

V I = (2 sinh 2 H )  L/2 e x p ( - H * A o )  

V2 = e x p ( H ' A  i) (2) 

Here H, H '  are real parameters ,  H * =  �89 coth H, and  Ao, A~ are the 
matr ices  

L L 

Ao=-Zo) ,  t3) 
i=l  j = l  

a)", t r f ,  a} are the usual  Paul i  spin matr ices  at site j .  
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Onsager I-Ref. 1, Eqs. (60)-(61)] showed that one could recursively 
generate two sets of matrices Ak, Gk satisfying the commutation relations 

[Ak, A,,,] = 4G~_ m 

[G .... Ak] =2Ak+, , , -2An  .... (4) 

[G,,, Gk] = 0 

They also satisfy the periodicity condition 

Am+L= - C A , ,  (5) 

C = a~a," '_.. .a cx is the operator that reverses all spins. 
Taken together, these Lie algebra relations (4) and (5) enabled 

Onsager to calculate all the eigenvalues of V, V2. They have a simple direct 
product property and he was thus able to calculate Z and hence the free 
energy. In the same paper he went on to calculate the interfacial tension, 
correlation length, and specific heat. He then turned his attention to the 
even harder problem of calculating the spontaneous magnetization. He 
announced the result (but not the derivation) at a conference in Florence 
in 1949.12"3) Yang independently studied the problem in 1951. The calcula- 
tion was long and intricate, but the pieces suddenly fitted together, giving 
an amazingly simple result (ref. 4; ref. 5, p. 12). 

Other methods for calculating the free energy were found later: Kauf- 
man ~61 also solved the problem algebraically, but using spinor operators. 
Kasteleyn 17"8) and Fisher 191 and Temperley I~~ used the combinatorial 
Pfaffian method to solve the related dimer problem. Schultz et al. I'j) 
showed how the problem could be solved algebraically using fermion 
operators. 

The next development was not in two-dimensional lattice models, but 
in one-dimensional quantum problems. One was the N-body problem with 
delta-function interactions: 

N 

~,~F= - Z c3-'/c3x~ + 2c Z 6 ( x i - x j )  (6) 
i =  1 i < j  

The other was the anisotropic Heisenberg spin chain of L sites: 

L 

"-~: - - �89  E {a;a;+, +a;'a~+, +Ao'f~,+,} (7) 
i = 1  

where a}", a~', a~ are the Pauli spin matrices at site i. In both cases one 
wants to calculate the eigenvalues of • ,  in particular the lowest eigen- 
value, which is the ground-state energy E. 
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The first problem (for the simple bosonic case) was solved by Lieb and 
Liniger in 1963, ~'-I the second by Yang and Yang in 1966. ~3~ 

Both problems can be interpreted as particles moving on a line, inter- 
acting when they come together. Both can be solved by the Bethe ansatz 
approach. In this method one first notes that as long as the particles are 
separate, they do not interact: this suggests using a product form for the 
eigenvector: 

~(x, ..... xN)=~,(x,)  r162 

provided x ~ < x 2 < - . .  < x u .  In fact, since the system is translation- 
invariant, the single-particle functions are plane waves, giving 

[]](X 1 ..... XN)  = e x p ( k l X l  + k 2 x 2 +  . . .  + k N X N )  ( 8 )  

where k~ ..... k u are N wave numbers that are to be determined. The corre- 
sponding eigenvalue or energy E of ~ is a symmetric function of kl . . . . .  kN .  

The next step is to take account of the interactions that occur when 
two particles come together, say when Xl =x2.  Then the wave function 
involves kt ..... k N only via the momenta k~ +k~_ and k3 ..... kN. These and 
the total energy E are unaltered by interchanging k~ with k2 (and there are 
no other choices of kj . . . . .  k N that do this). This suggest trying a super- 
position of plane wave solutions (8): 

[ ] / ( X  1 . . . . .  XN) = ~ A(kl ..... k u )  exp(klxl  + --- + k u X N )  
P 

where the sum is over all N! permutations P of kt ..... k u.  

Then the boundary conditions that arise when two adjacent particles 
come together are satisfied, provided A(kl ..... kN)  satisfies relations of the 
form 

S(ki, ki+ t) A(kl ..... ki,  ki+ 1 ,..-, kN) Jr S(ki+ t ,  ki) A(kl ..... ki+ t, ki ..... ku) = 0 

(9) 

Here S(k, I) is some function of k and I that is determined by the equation 
and its symmetries; (9) is to hold for i =  1 ..... N -  1 and all permutations of 
k~ ..... kN. 

There are ( N - - 1 ) N ! / 2  equations (9) and it is not obvious that they 
can all be satisfied. If S and A are scalar functions (as in the bosonic 
N-body problem and the ansisotropic Heisenberg chain), then this problem 
is easily solved by noting that the equations have the explicit solution 

A(k, ..... kN) = ge ~. S(k~, kj) 
i>j 
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where k~ . . . . .  k N is some permutation P of the original N wave numbers, and 
e~, is the sign ( _ )  of P. 

The corresponding fermionic N-body proble requires a more 
sophisticated Bethe ansatz. It was first studied by McGuire ~ and 
GaudinJ ~s~ The problem is simple if all the spins point upwards, or if only 
one points down. Flicker and Lieb c~9~ showed that the problem could be 
solved when two of the spins were down, and predicted that their method 
could be extended to the general case. Yang ~-'~ considered the N-body 
problem with arbitrary symmetry, and noted that each S(k, l) becomes a 
matrix St(k, l), dependent on the position i on which it acts; defining 

Yt (k , / )=  -S t ( I ,  k ) - '  St(k, l) 

we find that Eqs. (9) become 

A(kl ..... ki+n,ki ..... kN)= Yi(ki, k i+l)A(kl  ..... ki, ki+ 1 ..... kN) (10) 

For N = 3 we deduce that 

A(m, l, k )= Yl(l, m) A(l, m, k) 

= Yj(l, m) Y2(k, in) A(l, k, m) 

= Yt(l, m) Y2(k, m) Yn(k, 1) A(k, l, m) 

and that 

A(m, l, k )= Y_(k, l) A(m, k, 1) 

= Y2(k, l) Y,(k, m) A(k, m, l) 

= Y ( k ,  l) Yl(k, m) Y~(1, m) A(k, l, m) 

These two equations are consistent if, for all k, l, m, 

Yj(l,m) Yz(k,m) Y l ( k , l )=  Y2(k,I) Yl(k ,m) Yz(l,m) (11) 

and indeed if this is satisfied (with suffixes 1, 2 generalized to i, i +  I), then 
the relations (10) are mutually consistent for all N [pp. 631-633 of ref. 14, 
Eq. (8) of ref. 20]. 

Things then began to move very rapidly, for it was quickly realized 
that the Bethe ansatz method can be used to solve two-dimensional six- 
vertex models in statistical mechanics. In these, one places arrows on the 
edge of the square lattice, subject to the "ice" rule that there are two arrows 
into each vertex and two arrows out. This gives six possible configurations 
of arrows at a site, which one can order in the standard way. ~22' 231 To these 
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one assigns weights co t ..... 0) 6 . If the model is reflection-symmetric, then the 
weights are equal in pairs and we can define 

a=col  =co2, b = co3 -- co4, c = co5 = co6 

One can regard the down arrows in a row as "particles." Because of 
the ice rule, their number is conserved and one can try a Bethe ansatz for 
the eigenvectors of the transfer matrix. It works. Lieb solved three special 
but archetypal cases, t~-2-25~ The general solution was published by 
Sutherland, tz6~ who was Yang's first graduate student at Stony Brook. 
Yang and Yang developed a finite-temperature field theory for the thermo- 
dynamics of the anisotropic Heisenberg chain in 1969. t271 

These were exciting times: McGuire was now at Florida Atlantic, 
Yang and Sutherland at Stony Brook, Lieb and Wu at Northeastern in 
Boston, though Lieb was about to move to MIT. All the developments 
were occurring in the eastern United States, in particular in the northeast. 

I was fortunate enough to join Lieb in 1968 at MIT, and I well 
remember the thrill of walking into one of Joel Lebowitz's Yeshiva Univer- 
sity meetings in New York to see gathered there so many of the people 
whose papers I had read. 

With Lieb, I looked at a number of potential Bethe ansatz problems, 
in particular inhomogeneous six-vertex models. Some worked, some did 
not. Finally I sat down and considered a completely inhomogeneous model 
in which co~ ..... co6 were all allowed to vary arbitrarily from site to site. 
It was straightforward enough to deduce the conditions under which an 
appropriately modified Bethe ansatz would still work-- I  wrote this up in 
the MIT applied math journal. 1281 Then in 1970, after two great years in 
Boston, my wife Elizabeth and I left for a five-month holiday in England 
before taking the P & O liner Arcadia back to Australia. 

Toward the end of those five months, I picked up my MIT article and 
realized something that was in fact present in Sutherland's 1967 paper: 
the eigenvectors of the transfer matrix depended on a, b, c only via the 
parameter 

A = (a 2 + b 2 - c2) / (2ab)  

(In fact they were identical with the eigenvectors of the anisotropic 
Heisenberg chain: an observation that had been made and used by Lieb.) 
This meant that transfer matrices with different a, b, c, but the same zl, 
commuted. If one  fixed /% then there was still one nontrivial degree of 
freedom that could be varied from row to row without affecting the common 
eigenvectors: for row i, call this variable Pi. There are corresponding 
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variables qj associated with the columns j :  these do affect the eigenvectors, 
but in a very simple way, and the Bethe ansatz still goes through. 

An explicit parametrization that manifests these properties is to set, for 
the site in row i and column j, 

a :b : c = s i n h ( q j - p i )  : s i n h ( 2 - q j + p i )  : sinh 2 (12) 

where 

A = - c o s h  2 (13) 

Then the eigenvectors are independent of p; and the eigenvalues are 
Laurent polynomials in exp(p~). Note that the weights a, b, c depend on the 
two rapidities p~, qj only via their difference qj -P i .  

Could this commutation property be established directly ? If so, could 
it be extended to the more general eight-vertex model, in which the number 
of down arrows is not conserved and the Bethe ansatz is not immediately 
applicable ? 

Sutherland 129~ considered this possibility in early 1970. He explicitly 
showed that any eight-vertex model transfer matrix commutes with an 
X Y Z  Hailtonian 

L 

Z ' . . . . . . . .  ' " + J - ~  _ la.v~ri ffi+ l + J.vcr; if;+ . 
i = I  

which is obviously a generalization of the anisotropic Heisenberg chain (7). 
Sitting in Frinton-on-Sea in England, unaware of Sutherland's work, 

I looked at the rather more general problem of the commutation of two 
eight-vertex transfer matrices. I soon realized this was possible, provided 
only that a certain local relation is satisfied. This involves the four-by-four 
matrices that add vertices to the lattice [-Eq. (B6) of ref. 30]. If the lattice 
is drawn diagonally and the vertex in column n has weights given by (12), 
then one can write the corresponding matrix as Y,,(pg, qj) (regarding 2 as 
a given constant). It acts on the arrows on columns n and n + 1. Then the 
relation that ensures commutativity is. 

Y,,(q,r) Y,,+,(p,r) Y, ,(p,q)= Y,,+t(p,q) Y,,(p,r) Y,,+,(q,r ) (14) 

for all p, q, r [-Eq. (10.4.31) of ref. 31]. Sutherland had used a limiting case 
of this. 

Obviously this is the same equation (apart from notation) as (11). It 
is true that here the Y,,(p, q) are vertex operators of the lattice, while in 
(11) they are operators internal to the Bethe ansatz. There are intimate 
connections between these, as is brought out in the QISM approach of 
Faddeev.132" 33) 
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Yang-Bax te r  relat ion (14). 

The parameters p, q, r are known (by analogy with field theory) as 
"rapidities." They are associated with the lines of the lattice. A vertex is the 
intersection of two lines, and its weight involves the corresponding two 
rapidities. Equation (14) can be interpreted graphically (Fig. 1) as meaning 
that the effect of three lines intersecting is independent of the order in wich 
they cross one another (Fig. 7 of ref. 14, Fig. 10.1 of ref. 34, Fig. 9.3 of 
ref. 31). 

I believe it was Faddeev's group who coined the name "Yang-Baxter" 
relation for Eqs. (11) and (14). However, it should be noted that this rela- 
tion takes different forms according to whether one is considering a lattice 
model with spins on sites interacting along edges, a vertex model [ref. 31, 
Eq. (9.6.8)], or a spin model with interactions round a face [ref. 31, 
Eq. (13.3.6)]. For the first type of model (in particular, for the Ising 
model), the relation becomes the "star-triangle" relation (refs. 35,36; 
ref. 31, w This was used as long ago as 1945 by Wannier, c371 and subse- 
quently by Houtappel, ~38~ to locate the critical point of the triangular and 
honeycomb lattice Ising models. Indeed, it is clear from Onsager's article of 
1971 that he was aware of the relation before he wrote his famous 1944 
paper, and realized its implications for the commutation of transfer matrices. 

This relation places one well on the road to solving a model, and 
I was able to solve the eight-vertex model. A large number of models 
have since been solved by this technique. Some notable examples are the 
three-spin model, ~39-41) the hard-hexagon model, 142"43) the Fateev- 
Zamolodchikov model, ~44'45) the Kashiwara-Miwa model, t46-481 the ABF 
model, 149'5~ and the AI: I face models, t51) (A more comprehensive list is 
given in ref. 52.) Usually one can go on to show that the transfer matrices 
satisfy a functional matrix relation [e.g., ref. 53, Eq. (4)] and that this 
relation (together with the commutation properties) determines their eigen- 
values. From these one can in principle calculate the free energy, the 
correlation length or mass gap, and the interfacial tension. 

822/78/t-2-2 
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The Yang-Baxter relation has fascinating implications for correlations 
within a model. 154'5s~ Indeed, for the Ising model (and the chiral Potts 
model discussed in the next paragraph) it is possible to calculate the free 
energy solely from the relation, ts6' 57~ [The spontaneous magnetization can 
be calculated reasonably simply using corner transfer matrices; ref. 31, 
Eq.(13.7.21)]. A whole field seems thereby to be arising, connecting 
solvable models, integrable systems, knot theory, Lie algebras, and 
quantum groups. 

The model that has most recently been solved by this route is the 
chiral Potts model--a generalization of the Ising model that also satisfies 
a star-triangle relation. We have functional relations determining the 
transfer matrix eigenvalues ts8-6~ and the free energy and interfacial tension 
have been calculated. ~6~'62~ However, unlike most previous models, the 
chiral Potts model does not have the "rapidity difference property" 
mentioned after (12). This makes it technically much more difficult. 

Like the six-vertex model, the transfer matrices of the chiral Potts 
model commute with a one-dimensional Hamiltonian. There is a special 
"superintegrable" case of the model ~63-65~ when the Hamiltonian becomes a 
linear combination of two operators Ao and A~ that generate precisely the 
algebra (4) found by Onsager for the Ising model, except that one no 
longer has the periodicity condition (5). Again the eigenvalues have simple 
direct product structures, but now there are many sets of such structures. 

There is an extremely strong conjecture (based on series expansions) 
for the analog of the spontaneous magnetization Mo [ref. 66, Eq. (1.20)], 
which implies that it has a very simple form--very like that of the Ising 
model, but with a different exponent. We should of course like to prove 
this, but as yet have not been able to do so. 

This is rather intriguing--we are in much the same position with the 
chiral Potts model as we were with the Ising model in the late 1940s: much 
has been done, but much remains to do, and Onsager's pioneering work 
continues to provide inspiration. 
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